The Reaction of H8Si8O12 with a Chromium Oxide Surface: A Model for Stainless Steel Surface Modi®cation
نویسندگان
چکیده
Many metal alloys are susceptible to corrosion, particularly after processing steps such as welding. Chemical vapor deposition (CVD) is an effective way to modify metal surfaces and impart specific physical and chemical properties. A hydrophobic, nanosegmented silicon oxide coating derived from the discrete cluster molecule H8Si8O12 has been shown to chemisorb to 302 and 304 stainless steel. To understand better how this cluster binds to steel, a comprehensive study of these clusters adsorbed on chromium oxide was undertaken. IR, XPS and valence-band spectroscopies show convincingly that the clusters are chemisorbed intact on this surface. The coating also readily forms on molybdenum, tungsten, iron and nickel oxides, promising general application to a wide variety of metal alloys. Copyright # 1999 John Wiley & Sons, Ltd.
منابع مشابه
Investigation of the oxidation behavior of Mn-coated AISI 441 steel for SOFCs interconnect application
Protective coatings that resist oxide scale growth and decrease chromium evaporation are necessary to makestainless steel interconnect materials for long-term durable operation of solid oxide fuel cells (SOFCs). Inthis study a layer of manganese was coated on the surface of AISI 441 ferritic stainless steel which is used insolid oxide fuel cells for interconnect applications. The oxidation beha...
متن کاملIsothermal and cyclic oxidation behavior of AISI 430 ferritic stainless steel coated with titanium
In order to improve the oxidation resistance of ferritic stainless steel, it is possible to deposit a protective coating on steel substrate. In this research through the usage of pack cementation method a coating of titanium was applied on the surface of AISI 430 stainless steel. Scanning Electron-Microscopy (SEM), Energy- Dispersive X-ray spectrometry (EDAX) and X-ray diffraction (XRD) were us...
متن کاملRaman spectroscopic analysis of iron chromium oxide microspheres generated by nanosecond pulsed laser irradiation on stainless steel.
Iron chromium oxide microspheres were generated by pulsed laser irradiation on the surface of two commercial samples of stainless steel at room temperature. An Ytterbium pulsed fiber laser was used for this purpose. Raman spectroscopy was used for the characterization of the microspheres, whose size was found to be about 0.2-1.7 μm, as revealed by SEM analysis. The laser irradiation on the surf...
متن کاملDevelopment of a Chromium Vaporization Measurement System
One factor limiting solid oxide fuel cell (SOFC) performance is the degradation of chromium containing, ferritic stainless steel, interconnects during operation. When chromium-containing steels are used as interconnect materials a chromium oxide layer forms on the surface. Under SOFC operating conditions (Cathode gas 800oC and 2.5-3.1% H2O) chromium ions are vaporized by the cathode gas and red...
متن کاملPerformance Investigation of 405 Stainless Steel Thermosyphon using Cerium (IV) Oxide Nano Fluid
A thermosyphon is an efficient heat transfer device, which transports heat using gravity for the evaporation and condensation of the working fluid. In the present study the Box-Benhnken (BBD) design approach was chosen for the Two-Phase Closed Thermosyphon (TPCT) with CeO2 nanofluid using 0.1% volume of Nanofluid with surfactant of ethylene glycol. The experiment resulted in identifying the opt...
متن کامل